CSIRO NEWS – Science Stuff

TurtleMarin Debris Data Research
By 2050, 95 per cent of seabirds will have plastic in their gut. That is just one finding from our national marine debris research project, the largest sample of marine debris data ever collected anywhere in the world.
We surveyed the entire Australian coast at 100 km intervals, with help from school groups and citizen scientists. We found that our shorelines are littered with debris. About three-quarters of it is plastic and, although there are some large items, 95 per cent of the items are just a few centimetres across, or smaller.In Australian waters, you can expect to find anything from a few thousand to more than 40,000 pieces of plastic per square kilometre. Our research shows that the vast majority of this rubbish comes from the land, with large concentrations near our cities, rather than from litter dropped at sea.

Getting Indigenous students into science and maths
Aboriginal and Torres Strait Islander students are around two-and-a-half years behind their peers in scientific and mathematical literacy, and this gap has remained the same over ten years. In an attempt to close this gap, we’ve partnered with BHP Billiton Foundation to deliver a new education project for Aboriginal and Torres Strait Islander students that aims to increase their participation and achievement in these subjects. The $28.8 million, five-year project will focus on tailored learning and will support students from primary school through to tertiary education through six key elements.
Gates Foundation funds food in Africa
We have received a $14.5 million grant from the Bill & Melinda Gates Foundation to improve the productivity and incomes of smallholder farmers across Sub-Saharan Africa. This five year humanitarian project will develop tools to generate self-reproducing hybrid cowpea and sorghum crops to help millions of farmers become more self sufficient with higher yielding crops.

What are our attitudes to mining?
It’s no secret that mining is important to Australia, but that doesn’t necessarily make it popular with society at large. We wanted to have a better understanding of what Australians think about mining, so in 2013/14 we conducted an online survey of 5,121 Australians. We’ve gone beyond basic descriptions of attitudes towards the extractive industries, and looked at the relationship between mining and society in a more constructive and sophisticated way.

Smartphone app a life saver for heart attack patients
Patients recovering from heart attacks are almost 30 per cent more likely to take part in rehab at home using a new smartphone app compared to those who have to travel to an outpatient clinic or centre. What’s more, a clinical trial has shown that those who used the online delivery model were 40 per cent more likely to adhere to the rules of the program and almost 70 per cent more likely to see it through to completion. The results of our clinical trial were so positive that next-gen version of the platform is being offered in a number of Queensland hospitals.

Seven things you didn’t know about Ned Kelly
Only we could come up with a book about the science of Ned Kelly.
To celebrate the release of Ned Kelly: Under the Microscope, from CSIRO Publishing, we thought we’d share a few of the most surprising facts about this national icon:

  • Ned Kelly was illiterate
  • A film about Ned Kelly was the world’s first feature film
  • If you have a Ned Kelly tattoo you are more likely to die violently

Lost bushwalker saved by flying robots

Flying robot enthusiasts can breathe a deep sigh of relief, because Outback Joe has finally been saved after spending eight years lost in the bush.
Sixteen teams from around the world competed in the search and rescue mission to save our beloved Akubra-clad mannequin pal as part of the yearly Unmanned Aerial Vehicle (UAV) Challenge.

Three wins at EurekasImageJ=1.48p

They call them the Oscars of the science world, without the acceptance speech tears. The Australian Museum Eureka Awards were held earlier this month and we’re very proud of our award winners.
Congratulations to the three CSIRO winners – the Hendra Virus Research Team, the WUE Initiative Team and Mark Talbot, for his stunning photographs of plant cell tissue (pictured here).

Nobel Pbodyinspacerize for Body in Space.
It’s three in the morning. Nature calls. You stagger from your bed, squinting in the darkness as you blindly weave your way past a bookshelf, around the glass cabinet, and down the corridor into the smallest room in the house. Not only do the scientists John O’Keefe, May-Britt Moser and Edvard Moser understand how your brain managed this – they earned themselves a Nobel Prize in the process.
Knowing precisely where your body sits in an environment is a neat trick that has less to do with your eyes than you might think. In 1971, John found that nerve cells in the hippocampus region of a rat’s brain fired up when the rat moved through a specific spot in a room. Moving the rat to other spots made other, similar nerve cells work harder. John realised these so-called place cells worked like a tiny map.
Nearly 35 years later, May-Britt and Edvard found another type of nerve cell in a strip of tissue connecting the hippocampus to other parts of the brain. Described as grid cells (due to the pattern of their activation), these nerves seemed to act like a coordinate system.
Together, these cells provide you with a mental map and a coordinate system that tells the rest of your brain where your body is in relation to its surroundings. This way you’re able to move around even while you’re unable to see, hear, or smell anything.
For their research, John, May-Britt and Edvard were awarded the 2014 Nobel Prize in Physiology or Medicine.
Many neurological conditions, such as Alzheimer’s disease, can dramatically affect the hippocampus region. Knowing more about these cells and how they work can provide new insights and possibly new treatments for those who suffer spatial memory los

fish_blindThe Blind Fish
Getting out of bed some days feels like too much effort. If only night lasted all day, just like it does for the blind Mexican cavefish. Like the fish, you just might save some energy by living in an endless night.
The Mexican tetra (Astyanax mexicanus) is a species of fish found in the southern United States and parts of Mexico. It takes two forms, or ‘morphs’ – one with good vision and one that develops without eyes. While the sighted morph swims in streams exposed to sunlight, the blind morph can be found underground in lightless caves, finding its way by detecting changes in the surrounding water pressure.
A world without sunlight is also a world without the predictable rhythm of night and day. Many living things – from humans to flowers, and even a number of microscopic organisms – have chemical processes that roughly match the 24 hour patterns of night and day. These processes help prepare you with a boost of energy during the times of day you need it most.
Called a circadian rhythm, this body clock doesn’t rely on you checking your watch or even seeing the Sun. It is kept in check by periods of light and dark. If you’ve ever had jet lag, you’ve experienced your circadian rhythm telling you to sleep or eat at odd times of the day.
Yet the Mexican cavefish lives in darkness, so does it even have a circadian rhythm? To find out, Swedish biologists compared the blind morph with the sighted morph, and found that the blind morph does not have this internal body clock. It also uses less energy than the sighted morph, by not having to prepare for daylight.
Next time you oversleep, you’ve got a new excuse. Tell your teacher you’ve become a blind Mexican cavefish and lost your body clock!

Bacteria under Antarctic Ice
There’s life under ice. Scientists found an entire community of bacteria living 800 metres under the surface of glaciers in Antarctica. These bacteria rely on each other to survive in the dark, isolated, subzero lake.
At the south-eastern edge of the Ross Ice Shelf, under the ice of glaciers, lies the liquid water of Lake Whillans. The thick layer of ice keeps the freshwater lake isolated from the world above, stopping nutrients from flowing down into it. How could anything survive there?
Recently, almost 4000 species of bacteria were found in Lake Whillans. The bacteria seem to survive by getting nutrients from the bedrock. The weight of the ice crushes the rocks, and the minerals in the rocks react with oxygen in the water. This reaction makes the rocks a source of energy for the bacteria.
The bacteria living in Lake Whillans also carefully recycle all the nutrients they can. The ecosystem of bacteria relies on rescuing nitrogen, another important nutrient, from dead bacterial cells.
When studying Lake Whillans, scientists had to be careful not to contaminate the lake with bacteria from above ground. If samples from the lake were contaminated, the researchers wouldn’t know if bacteria actually came from the lake, or if they were just carried on the equipment.
Introducing new bacteria into Lake Whillans could also be dangerous for the bacteria living beneath the ice. After being isolated for so long, the ecosystem could be disrupted by visitors. To break into the lake, researchers melted a hole in the ice using hot water. The hot water was kept super clean by filtering it, blasting it with ultraviolet radiation, heating it, and disinfecting it with hydrogen peroxide.
The ecosystem of bacteria in Lake Whillans shows how life can survive in harsh conditions. Perhaps single-celled life could also live beneath sheets of ice on Mars, feasting on the rocks.

Australia’s new Marine National Facility research vessel, Investigator, arrived on Tuesday to its home port of Hobart. The ship will soon take scientists and high-tech equipment to the watery parts of the world; to measure the weather, take samples from the sea floor and study marine life.
The ocean is a vast area to explore, and a lot about ocean life and geology is still a mystery. So what better place to have a science laboratory than out in the salt spray and rolling waves? The Investigator can carry 60 people and supplies for two months at sea. Oceanographers, marine scientists and geoscientists will be able to use the vessel to answer all sorts of questions.
To help scientists improve weather forecasting, Investigator has a heavy hat. “The weather radar on top of the mast weighs as much as a Toyota Corolla, and must be kept level as the ship pitches and rolls,” says CSIRO’s Brian Griffiths, part of the team that helped to design the ship. The device can record the height of clouds and tell if they are carrying rain, hail or snow.
The ship can also capture history by taking core samples – extracting mud and sand from the seabed using a long steel tube. “It’s like sucking up a milkshake through a straw and putting your finger over the top to keep it in,” explains Brian.
Within this muddy material is a record of the climate from about the last 800 000 years. “We can examine different species of diatoms [algae] and learn how ocean circulation patterns have reacted to changing climates like ice ages,” says Brian. “It’s similar to looking at [growth] rings in trees.”
After years of designing and building Investigator, it is now in Tasmania and getting ready for research.

Penguins_juvenilePenguins team up
Little penguins spend their days finding food at sea. With the help of location-tracking devices, researchers have found out that the smallest species of penguin tends to travel the sea in groups, and may dive at the same time while hunting fish.
Little penguins, also known as fairy penguins or blue penguins, are found in southern Australia, New Zealand and the Chatham Islands. Often they live on islands safe from foxes and feral cats. The penguins spend their day hunting for fish and crustaceans at sea, and come back to land as the Sun sets, to sleep in burrows.
It is difficult to observe bird behaviour at sea, so to work out how penguins find food, Maud Berlincourt from Deakin University turned to technology. A very small and light location-tracking device that also measures depth allowed her to collect data on the penguins at sea. The device was put on the back of the birds like a little backpack, and black waterproof tape kept it attached to their slick feathers.
Each penguin swam around with their backpack for a day, and then Maud collected it again at night. “We are monitoring a breeding colony on the eastern coast of Victoria at London Bridge. Those penguins are already sitting on eggs and some of them have chicks right now,” says Maud. “It’s a lot of work. I have spent many days and nights in the field waiting for the birds to come back with their devices.”
Maud collected data over 22 days, and with only a few penguins each day wearing the device. She found that they went to sea to hunt for about 15 hours during the day, and travelled around 40 kilometres. That’s at least an eight hour hike for us people.
Between 30 and 50 little penguins would leave each day to find food, and only about four would be wearing the device. Even though Maud was only tracking a few penguins at a time, she found them hanging out together quite a lot. On average, about 85% of tracked penguins would spend at least some time walking, swimming or diving near other tracked penguins. Almost half of the time, penguins swimming together would also dive at the same time.
These results suggest that little penguins look for food in groups, and might cooperate as they hunt fish. Does a penguin always look for food with the same feathered friends? More research is needed to find out.

3Dprint_blood vessel3D Bio-printing blood vessels
3D printers can create toys, bicycle parts and models of dinosaur bones. Bio-printers are 3D printers with a difference. They can actually print structures containing living cells, the same kind of cells that make up the human body!
Wouldn’t it be amazing if you could have a new liver or kidney printed for you, if yours was damaged by an accident or disease? It’s a big dream, but scientists are working on the problem now.
One big obstacle to bio-printing a whole organ, like a liver, is that it needs a big network of blood vessels to keep the cells alive. Blood provides cells with life-giving oxygen and nutrients, and also removes waste. Most cells are just a hair’s width from a supply of blood. Blood vessels need to reach everywhere – it’s a big challenge.
Luiz Bertassoni from the University of Sydney is part of the team that has bio-printed blood vessels. The team used two different materials, which were fluid enough to print and then could be made solid. “One material can be solidified with low temperature, it’s a material from seaweed called agarose,” he says. “The other is a jelly-like material (from gelatine), which was solidified by light. Using a combination of both was one of the tricks we had to use to create these vascular networks.”
To create the blood vessels, Luiz used a 3D printer to make a network of agarose. Once the agarose was solid, the structure was covered with a gelatine-like material containing living cells. “Then we removed the agarose structure that we printed, and ended up with little channels left behind,” he says. When endothelial cells – the kind that form blood vessels – were put in the channels, they organised themselves to cover the channel without clogging it. A fluid, such as blood, could pass through this bio-printed blood vessel.
“We’re excited about getting one step closer to creating fully-functional organs, but we’re still a number of years away from that,” says Luiz. “We hope that sometime soon we will be able to create functional organs that could be implanted in patients.”

Gold Test for Diabetes
Researchers have made a cheap and rapid new test to diagnose type 1 diabetes using a gold-studded glass chip.
Each day, around 280 Australians are diagnosed with diabetes. There are many different types of diabetes, and they are all connected by insulin. Insulin is a hormone made by the pancreas, an organ located behind your stomach. It controls how much sugar gets from your blood into the muscles and other cells of the body. Both insulin and sugar are needed to give your cells energy, so diabetes can be very dangerous.
Type 1 diabetes is an autoimmune disease, which means the body is attacking itself. The immune system creates antibodies that target cells in the pancreas, causing damage that stops it making insulin. On the other hand, in type 2 diabetes the body does not attack itself with antibodies, but either the pancreas is damaged by another way, or the muscles and other cells have stopped responding to insulin.
When someone has diabetes, it is not always easy for doctors to know whether it is type 1 or type 2. The test is to look at their blood for the pancreas-targeting antibodies found in type 1 diabetes. This test is quite slow and expensive. Faster and cheaper tests just weren’t sensitive enough to detect antibodies. To overcome this problem, a team from Stanford University in the USA used nanotechnology
By placing tiny islands of gold on a glass surface, the team made an amplifier. The fast, cheap tests were now 100 times more sensitive, good enough to detect the antibodies found in type 1 diabetes. Placing just a drop of blood on the gold-studded glass chip would allow a doctor to quickly see if antibodies are there. After trying it out, they found the new nanotech-amplified test was as sensitive as the slower test currently used.


Australia’s largest Aboriginal ochre mine
Celebrating National Aborigines and Islanders Day Observance Committee (NAIDOC) week with a shared research project between the Wajarri people and the University of Western Australia!
Australia’s largest Aboriginal ochre mine is Wilgie Mia. In Wajarri Yamatji country far north of Perth, it is an incredibly important cultural heritage site. Red, yellow and green ochres from the mine have been traded across the country for many thousands of years.
It’s said that ochre from Wilgie Mia was traded across Western Australia into the Kimberley, the Pilbara, down to the south coast and into neighbouring states. Red and yellow ochres are still an important part of Indigenous Australian cultures today.
This week, three young Wajarri men are visiting the University of Western Australia to work alongside archeologist Vicky Winton. Together, they are studying samples from several new sites near Wilgie Mia.
“We’ll be going down to the stores and floating some of the samples,” says Vicky. “That’s a technique that involves putting excavated sediments into water.” Lighter material, such as burnt or charred wood, separates from rocks and makes it easier to sort.
Even after it has been burnt, charred wood can reveal interesting things. Using a technique developed in Europe, the team previously identified the species of tree burnt in fires long ago. Archeological samples can be compared to modern charcoal, taken from partially burnt trees that have been carefully identified. Brendan Hamlett, a Wajarri Traditional Owner who worked on an earlier trip to the University, was surprised to find Mulga trees had been burnt the past. Today, the Wajarri people mainly use Miniritchie and Gidgee trees, he says.
High-end technology can be used to study rich cultural treasures. Recently, a super computer from the University of Western Australia stitched photos of cave shelters into 3D models. Having a digital record of the sites makes it easier to spot any damage that might occur in the future.
By sharing knowledge, everyone benefits. Training the next generation is a priority for the Wajarri Traditional Owners, says Brendan. “This is the first time I’ve made maps with a computer. It’s unreal to use this technology to draw parts of my country.”

Science Brief

Image stem cells
Human Embryonic Stem cells

From CSIRO Australia


The 2012 Nobel Prize in Physiology or Medicine has been jointly awarded to Sir John B. Gurdon and Professor Shinya Yamanaka. They received the award ‘for the discovery that mature cells can be reprogrammed to become pluripotent’. What does that mean?

Humans are made of many tissues: bone, skin, muscle and more. Look at the tissues under a microscope and you’ll see they are made of cells. Cells are the building blocks of life.  An adult human is composed of trillions of cells of many types, but all humans start out as a single, fertilised egg cell. After fertilisation, this cell starts to split, forming new cells. There are cells that develop which have the potential to form any type of cell. Some stem cells, which can go on to form most other cells, are said to be ‘pluripotent’.

Eventually, as the foetus grows, these pluripotent cells are said to specialise – that is they mature into specific types of cells. Some will become skin cells while others will form muscles and other body parts. Originally, the theory was that once a cell matured into one cell type, it couldn’t become another cell type – for example, a white blood cell couldn’t become a neuron cell in the brain.

The work of John and Shinya showed this isn’t the case. Both were able to take mature, specialised cells and show that they could be changed, or ‘reprogrammed’, to revert to immature cells. These cells could then mature into another type of cell.

Their discoveries have helped scientists better understand the development of cells and cell specialisation. There are also a number of medical applications, to treat diseases such as cystic fibrosis and Huntington’s disease, made possible by their work.

Image sketch ball lightning
Ball Lightning


You’re at home, sitting on the couch. Outside, there is thunder and lightning. You notice something at the window: a strange, glowing ball of light. As you watch, it appears to pass through the glass. It wanders through the air before abruptly disappearing.
What you’ve seen isn’t magic, it’s a puzzling phenomenon called ball lightning. Rare and mysterious, witnesses often describe it as a ball of light, about the size of a grapefruit that moves slowly through the air before disappearing. It is often seen during thunderstorms, but not always.

Ball lightning is so rare, scientists don’t know what it actually is, and some people doubt if it exists at all. Possible causes proposed by scientists include microwave radiation, nuclear energy or reactions caused by more typical lightning. Now researchers from CSIRO and the Australian National University have used maths to come up a new explanation.

They propose that certain conditions in the atmosphere cause charged particles (or ‘ions’) to clump together on a surface like the outside of a glass window. These negatively charged ions attract positive ions, which group together on the other side of the glass.

Having too much of the same charge in one place is unstable. A more stable situation is to have the charges balanced, which can happen by moving charges. This is called a ‘discharge’, and often takes the form of a spark.
In this case, it is proposed that the positive charge on the inside of the glass discharges by removing electrons from gas molecules, creating a mixture of electrons and ionised gas molecules. Under certain conditions, the discharge would give off light. Instead of a short, sharp spark, the discharge could form a glowing, moving ball: ball lightning.

This is the first time that a simple mathematical formula has been used to explain ball lightning. However, it doesn’t necessarily mean that the mystery is solved. Scientists will continue to debate this subject in the future. So even though the numbers might add up, ball lightning may remain a mystery for a little bit longer

Image of large Dam

Water, water everywhere?

It’s a small molecule, made of oxygen and hydrogen atoms in a V-shape. It’s colourless, odourless and expands when it freezes into a solid. It’s water, and without it, we wouldn’t be here.
Scientists have discovered organisms that can live without light or oxygen, while others thrive with very little heat. But scientists have yet to find life that doesn’t need water. Without water, many biochemical reactions necessary for life would be impossible, including photosynthesis and respiration.

Water also plays a role in the Earth’s climate. Water vapour forms clouds that fall as rain. Ocean currents transport vast quantities of water across the planet. These ocean currents can influence climate patterns.

It may seem that there is water everywhere, but in Australia there often isn’t enough of it. Australia is surrounded by water, but the salty water of the oceans can’t be directly consumed by humans, or used for agriculture. Australia is the driest inhabited continent and this makes the limited freshwater supplies even more valuable.

This week is National Water Week. The purpose of the week is to raise awareness in the community about water issues in Australia. It encourages the community, businesses and industry to reduce water consumption.

There are a number of ways to save water. CSIRO scientists are involved in a number of projects to use water more efficiently in agriculture and industry, as well as developing varieties of grain that use less water.

At home, you can make a difference. Having a shorter shower is the biggest saving that can be made inside the home, while fixing leaking toilets and taps can save a surprising amount of water. In the garden, planting hardy, native species that don’t require much water, as well as watering your plants and lawn at night, can save water. Even just being aware of the amount of the water you use and trying to use less can help.

Immage of Placoderm ancient fish
Placoderm Fish

The whole tooth and nothing but the tooth

Say cheese and flash that beautiful smile. You should be proud of those choppers; after all, teeth have been around for nearly half a billion years.

The fossilised teeth of backboned animals, or vertebrates, are a paleontologist’s dream – they’re tough enough to survive weathering and often contain distinctive features that reveal a lot about an animal’s diet. But when did the first tooth appear?

Winding back the clock roughly 440 million years, there’s an aquatic ancestor called the placoderm. These armoured fish provide us with the oldest evidence of vertebrate jaw bones. New body parts rarely pop into existence. Instead, a body part evolves or changes just enough to perform another job. In this case, the front gill slits of placoderm’s ancestors became useful for getting a grip on lunch.

There have been some big questions about when these early jaws sprouted teeth and if so, what those teeth might have been like. Were placoderms all gums? Did they have something like a toothy peg? Or could the first fish flash a sharp-looking grin?

Western Australia has well-preserved placoderm fossils with hints to help solve this mystery. However, the clues are inside the fossilised jaw bones. Cracking them open to take a peek is out of the question.

Instead, researchers from Curtin University, University of Bristol and London’s Natural History Museum worked with physicists in Switzerland using X-rays to peer inside the fossils. Only these X-rays are millions of times stronger than those at your local hospital, created by a type of particle accelerator called a synchrotron.

They found evidence of distinct structures that could be compared to what we’d today consider to be teeth. This suggests that teeth evolved not long after the first jaws appeared.

Image of Lorikeet parrots

Science by the people

Citizen science is on the rise. More and more, amateurs, or ‘citizen scientists’ are given opportunities to help scientists.
Citizen science projects typically use volunteers to assist in the collection or analysis of data. This data can then be used by professional scientists in their research. Examples include bird watching groups doing bird surveys, amateur astronomers sharing their observations and games such as Foldit.

Becoming a professional scientist is no easy feat. It generally requires years of study, research and often multiple university degrees to be considered an expert. One of the key features of science is its rigorous standards for experiments and obtaining data. This is to make sure the data is accurate so better conclusions can be made. There have been concerns about the quality of the data gathered by citizen scientists, as they may lack skills professional scientists have gained through years of training.

Yet in some projects this is not the case. A comparison between bird surveys conducted by amateurs and professionals in the Mount Lofty Ranges in South Australia showed that, overall, the results were quite similar.

There were some discrepancies. The citizen scientists reported seeing a few species proportionately more often and other species relatively less often than the professionals. Professionals are thought to be more systematic in their method and better able to identify species by their calls.

So it seems that the professionals do have some advantages. But rather than rejecting the value of citizen science, the researchers who did the comparison suggest that professional data can be used to calibrate the data collected by citizen scientists.

Some fields of science require highly specialised knowledge and expensive equipment, meaning they will be closed off to citizen scientists. But other fields of science, particularly the environmental sciences, could greatly benefit from the participation of citizens. Citizen science lowers the costs of doing research and engages the community in the scientific process.

Image of Dingoes

Feral felines avoid top dogs

 Dogs chase cats – it’s one of the facts of life. However, what seems to be true in the backyard might not be the case in the Australian bush.
Dingoes are wild dogs that have lived in Australia for several thousand years, while the arrival of cats was much more recent. Since their introduction, feral cats have caused significant damage to the Australian environment. Cats have only lived in Australia for a few hundred years so many native species haven’t adapted strategies to avoid cats. This makes the native species easy prey.

Both feral cats and dingoes are predators, however, dingoes are larger than cats. This means the dingoes can eat prey, such as wallabies, that are too big for cats. Because of this, dingoes are considered to be apex predators, while cats are not. Apex predators sit at the top of the food chain.

Apex predators can control the numbers not just of prey species, but other predators. This can be because they kill or eat other predators, or because they out compete lesser predators for prey. In Australia, there is evidence that a higher number of dingoes leads to a reduction in the number of feral cats.

Researchers recently set up cameras to monitor feral cat and dingo behaviour in the Taunton National Park in Queensland. They found that cats and dingoes were often active in the same areas. In other words, it didn’t appear as if the cats were put off by the presence of dingoes in an area.

One theory is that the presence of dense vegetation means that the smaller cats can hide from the dingoes. This is supported by another study from Cape York in northern Queensland which found that more complex habitats allowed feral cats to coexist with dingoes.

While dingoes restrict the access of feral cats to prey, these studies show that the relationship between the two predators is more complex than the dogs simply chasing away the cats.

Something to Bragg about

 If Lawrence Bragg was still alive he really could be boastful. This November marks the centenary of crystallography. It’s a powerful technique Bragg helped to develop for studying the structure of chemicals.
Born in Adelaide, Lawrence remains the youngest person ever to win a Nobel Prize, the most prestigious award in science. Lawrence was just 25 years old when he shared the 1915 Nobel Prize in Physics with his father William.

Bragg’s work is still important today because it forms the basis of X-ray crystallography, a method for determining how atoms are arranged in a crystal. This kind of structural information is important for developing new technologies such as materials and medicines.

When a beam of X-rays strikes a crystal, the atoms in the crystal cause the X-rays to bend and spread out, forming a distinctive pattern. This phenomenon is known as diffraction and occurs when electromagnetic waves, such as visible light or X-rays, encounter an obstacle or narrow opening.

The resulting diffraction pattern for each substance is unique and depends on the spacing and arrangement of atoms within the crystal. Using Bragg’s famous law, it is possible to interpret the diffraction pattern and determine how the atoms are positioned within the crystal.

Table salt and diamonds were some of the first crystals to be studied by the Braggs using X-ray crystallography. Since then, the technique has been used to study the structure of countless substances. Perhaps most famously, it was used to determine the double helix structure of DNA, the chemical instructions on which life is based.

Understanding the chemical structure of substances helps scientists understand their properties, so it can be an important step in solving difficult problems. CSIRO scientists are using X-ray crystallography to study the structure of a protein found in the brain called amyloid beta. This protein is associated with Alzheimer’s disease, which results in memory loss. Understanding the structure of amyloid beta may help find a treatment for the disease.

So Lawrence Bragg is one person who might deserve to be just a little bit immodest. The method he helped to develop one hundred years ago remains one of the most important and powerful tools for investigating chemical structure today.

Image of Surveyor ship
Southern Surveyor ‘found’ no Island

The case of the phantom island

 A research team on board Australia’s Marine National Facility research vessel, Southern Surveyor, have made an unusual discovery: an island that isn’t there.
We rely on maps all the time. Street directories and websites such as Google Maps help us to find our way around unfamiliar places, and help prevent us getting lost. In some situations, accurate maps are more than just a convenience – they are a necessity. For example, nautical maps used by ships show many hazards such as shallow water, sand bars and coral reefs. Knowing where these are allows a ship’s crew to navigate a safe path to their destination. In case of an emergency, using a map to locate the nearest dry land may be of crucial importance.

‘Sandy Island’ appeared on many maps, including Google Maps and some meteorological maps. It seemed to be a rather large island (28 kilometres long) located in French territorial waters between Queensland and the island of New Caledonia – two places we’re sure are real!

The group of scientists from the University of Sydney, who were leading a research team on board Southern Surveyor, noticed the island wasn’t on the ship’s nautical charts, or on French government maps. The scientists were taking seafloor samples to try to work out the age and history of the seafloor across the Coral Sea.

It was late at night, around 10.30 pm when they arrived where Sandy Island was supposed to be. The captain went slowly for fear of running aground, but lo and behold there was 1300 metres of water below them, and no island!

How this phantom island found its way onto so many maps is not yet clear. What is clear is that a few places are going to have to update their maps, especially as accurate maps are important for nautical safety.

The mystery of Sandy Island shows how important it is to check sources of information. It is also a reminder that direct observation is a good way to confirm what we know. We know so little about our oceans; only 12 per cent of Australia’s territorial waters have been mapped.

Image of violin

Practice makes perfect?

When you learn something new, be it a musical instrument or how to ride a bike, you usually need to practise. Practising means we get better at doing things and learning things we didn’t know before. It makes sense that to get better at something we should practise longer – right?
It might not be so simple. When you learn something new, it’s not just what you do in training that matters, it’s also what happens afterwards. Your brain needs time to process the new information, so that it stays in your memory for later. This is called consolidation, and the best time for it to happen is while you sleep.

Researchers from the University of New South Wales wanted to know more about ‘wakeful consolidation’; that is, consolidation that happens while you’re still awake. They set up an experiment where three groups of participants tracked dots on a computer screen. One group practised for one hour straight and another for two hours straight. The third group practised for two hours in total, but they had a break after one hour. During the break participants weren’t allowed to sleep, but could do anything else, like go for a walk or read a book.

By the second day, the researchers found that the group that had the break were better at the activity than those who practised for two hours without one. What’s more, of the groups that didn’t have a break, the group that practised for only one hour did better than those that practised for two.

The researchers suggest that this is because the group that practised longer didn’t have time to consolidate what they learned in the first hour. The group that did have a break, and the group that practised for a shorter time, did have time to consolidate, so they performed better the next day.

This research has important implications for teaching and learning. It provides evidence that in order to learn most effectively, students shouldn’t slug it out too long on the one topic. Taking breaks mean you might be able to learn more, for less.

FDA (US) allows first stem cell test on humans

Certainly an important stage in the advancement of stem cell research. We will see huge changes in the treatment and prevention of disease through this and gene therapies over this century. As the article says, “as important as penicillin’ but probably will continue to raise thorny ethical issues. Like all major advances in technology how we will fare as a society using the technology will depend on what sort of society we become over the century. Will people still be starving while the super wealthy uses the research on longevity and beauty reconstructions? Will advances be widespread within a well-supported public health sector or a tool available only to help the powerful and dominant in communities increase their capacity, and the capacity and resoruce gap between them and the rest of society.